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Abstract

DASPKADJOINT, for sensitivity computation of differential-algebraic equations
(DAEs) by the adjoint method, is introduced and described. Several critical issues
for the implementation are addressed. DASPKADJOINT is more efficient than the
forward method implemented in DASPK3.0 for applications with a large number of
sensitivity parameters and few objective functions. Numerical examples are given to
illustrate the simple and effective use of the software.

1 Introduction

In this report we describe new software, called DASPKADJOINT, for the computation of
the sensitivities of differential-algebraic equations (DAE) by the adjoint method. Given a
DAE depending on parameters,

{

F (y, ẏ, t, p) = 0
y(0) = y0(p),

(1)

and a vector of objective functions G(y, p), the sensitivity problem usually takes the form:
find dG

dp
, where p is a vector of parameters. By the chain rule, the sensitivity dG

dp
is given by

dG

dp
=

∂G

∂y

dy

dp
+

∂G

∂p
.(2)

Let ny, np and nG be dimensions of y, p and G respectively. The computation of dy
dp

in

(2) requires the simultaneous solution of the original DAE system with the np sensitivity
systems obtained by differentiating the original DAE with respect to each parameter in
turn. For large systems this may look like a lot of work but it can be done efficiently, if np
is relatively small, by exploiting the fact that the sensitivity systems are linear and all share
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the same Jacobian matrices with the original system. This method has been implemented
in DASPK3.0 [21].

Some problems require the sensitivities with respect to a large number of parameters.
For these problems, particularly if ny is large, the forward sensitivity approach is intractable.
These problems can often be handled more efficiently by the adjoint method [12]. To see how

the adjoint method works, consider the problem of finding dG(y,p)
dp

, where y is the solution of

a nonlinear system H(y, p) = 0. We have the following relationship

∂H

∂y

dy

dp
+

∂H

∂p
= 0.

Assuming that ∂H
∂y

is boundedly invertible, the sensitivity dG
dp

is given by

dG

dp
= −

∂G

∂y

(

∂H

∂y

)−1
∂H

∂p
+

∂G

∂p
.(3)

Rather than computing dy
dp

directly, which could be very expensive if ny and np are large, we

solve for the adjoint variable λ, where λ∗ = −∂G
∂y

(

∂H
∂y

)−1
, which gives

λ∗∂H

∂y
= −

∂G

∂y

∗

.(4)

Thus if nG is small (for example nG = 1 for an optimization problem), we can obtain the
sensitivity very efficiently by solving a small system.

For the DAE system (1), the adjoint sensitivity method and the corresponding adjoint
DAE can be derived similarly. In [10] we derived the adjoint sensitivity system for DAEs of
index up to two (Hessenberg) and investigated some of its fundamental properties. In [11]
we addressed some of the issues for the numerical solution. In this report, we describe the
adjoint DAE solver, giving details about its use and implementation.

This report is organized as follows. In Section 2, we outline the adjoint sensitivity method
for DAEs and summarize some of the relevant results from [10] and [11]. In Section 3 we
describe how to evaluate the adjoint DAE efficiently by an automatic differentiation tool and
how to initialize the adjoint DAE with the help of existing mechanisms in DASPK3.0. Sec-
tion 5 describes some important considerations for implementation of the adjoint sensitivity
method for DAEs and how they are addressed in our software, DASPKADJOINT. Finally,
the effectiveness and efficiency of the algorithms and software are demonstrated on several
examples in Section 7.

2 The Adjoint DAE System and Sensitivity Calcula-

tion

In this section we present the adjoint sensitivity system for DAEs and summarize some of
the relevant results concerning initial values, stability and numerical stability from [10].
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The adjoint system for the DAE

F (t, y, ẏ, p) = 0

with respect to the derived function G(y, p)

G(y, p) =
∫ T

0
g(t, y, p)dt(5)

is given by
(λ∗Fẏ)

′ − λ∗Fy = −gy,(6)

where ∗ denotes the transpose operator and prime denotes the total derivative with respect
to t.

The adjoint system is solved backwards in time. For index-0 and index-1 DAE systems,
the initial conditions for (6) are taken to be λ∗Fẏ|t=T = 0, and the sensitivities of G(y, p)
with respect to the parameters p are given by

dG

dp
=
∫ T

0
(gp − λ∗Fp) dt+ (λ∗Fẏ)|t=0y0p.(7)

For Hessenberg index-2 DAE systems, the initial conditions are more complicated, and will
be described in detail along with an algorithm for their computation in Section 4. For index-
2 DAE systems, if the index-2 constraints depend on p explicitly, an additional term must
be added to the sensitivity (7)[10].

For a scalar derived function g(y, T, p), the corresponding adjoint DAE system is given
by

(λ∗
TFẏ)

′ − λ∗
TFy = 0,(8)

where λT denotes ∂λ
∂T

. For index-0 and index-1 DAE systems, the initial conditions λT (T ) for
(8) satisfy (λ∗

TFẏ)|t=T = [gy − λ∗Fy] |t=T . We note that the initial condition λT (T ) is derived
in such a way that the computation of λ(t) can be avoided. This is the case also for index-2
DAE systems. The full algorithm for consistent initialization of the adjoint DAE system will
be described in Section 4. The sensitivities of g(y, T, p) with respect to the parameters p are
given for index-0 and index-1 DAE systems by

dg

dp
= (gp − λ∗Fp)|t=T −

∫ T

0
(λ∗

TFp) + (λ∗
TFẏ)|t=0(y0)p.(9)

Note that the values of both λ at t = T and λT at t = 0 are required in (9). If Fp 6= 0,
the transient value of λT is also needed. For an index-2 system, if the index-2 constraints
depend on p explicitly, an additional term must be added to the sensitivity (9).

We focus on the adjoint system with respect to the scalar objective function g(y, T, p)
throughout this paper. If the objective function is of the integral form G(y, p) (5), it can be
computed easily by appending a quadrature variable (and corresponding equation), which is
equal to the value of the objective function, to the original DAE. For example, if the number
of variables in the original DAEs is N , we append a variable yN+1 and equation

ẏN+1 = g(y, t, p).
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Then G = yN+1(y, T, p). In this way, we can transform any objective function in the integral
form (5) into the scalar form g(y, T, p). The quadrature variables can be calculated very
efficiently [21] by a staggered method in DASPK3.0; they do not enter into the Jacobian
matrix.

From [10] we know that for DAE systems of index up to two (Hessenberg), asymptotic nu-
merical stability in solving the forward problem is preserved by the backward Euler method,
but only (for fully-implicit DAE systems) if the discretization of the time derivative is per-
formed ‘conservatively’, which corresponds to solving an augmented adjoint DAE system,

˙̄λ− F ∗
y λ = 0,

λ̄− F ∗
ẏ λ = 0.(10)

It was shown in [10] that the system (10) with respect to λ̄ preserves the stability of the
original system.

3 Evaluation of the Adjoint DAE

As we have seen, the adjoint DAE must be solved backward for its solution at t = 0. Since
not every DAE solver can take backward steps during the integration, we apply a time
reversing transformation τ = T − t to the adjoint system (8). This yields

λ̇∗
TFẏ(T − τ, y) + λ∗

T

(

Fy(T − τ, y)−
dFẏ

dt
(T − τ, y)

)

= 0,(11)

where λ̇∗
T = dλ∗

T/dτ , ẏ = dy/dt, and
dFẏ

dt
is the total derivative of Fẏ with respect to t.

Another advantage of using (11) instead of (8) is that the Jacobian for (11) is exactly the
transpose of that for the forward state computation. If the DAE system is linear with respect
to ẏ, then for any constant vector v, the product

dFẏ

dt
can be evaluated by

v
dFẏ

dt
= vFẏt + (vFẏ)yẏ.(12)

If the DAE system is nonlinear with respect to ẏ, an additional variable can be added to
make the DAE linear with respect to ẏ.

For many applications, Fẏ is constant and equation (11) becomes

λ̇∗
TFẏ + λ∗

TFy = 0.(13)

In these cases, we do not need to evaluate the term
dFẏ

dt
. If Fẏ is time-varying, the augmented

adjoint DAE system (10), which becomes

˙̄λ+ F ∗
y λ = 0,

λ̄− F ∗
ẏ λ = 0,(14)

under the time-reversing transformation, is used to preserve the stability. Although the
evaluation of (12) may not occur during the integration, it still has to be done during the
initialization.
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Equations (13) and (14) involve matrix-vector products from the left side (referred to
as vector-matrix products in the following). Although a matrix-vector product Fyv can be
approximated via a directional derivative finite difference method, it is difficult to evaluate
the vector-matrix product vFy directly via a finite difference method. The vector-matrix
product vFy can be written as a gradient of the function vF (y) with respect to y. If a
finite-difference method is used to calculate the gradient of vF (y), ny evaluations of vF (y)
are required. However, the cheap gradient theorem [15] tells us that the gradient of any
nonlinear function can be calculated for less than the cost of 5 function evaluations by
automatic differentiation (AD). Therefore, AD is necessary for full computational efficiency.
A forward mode AD tool cannot compute the vector-matrix products without evaluation of
the full Jacobian. It has been shown [14] that an AD tool with reverse mode can evaluate the
vector-Jacobian product as efficiently as a forward mode AD tool can evaluate the Jacobian-
vector product.

In DASPKADJOINT, we use the AD tool TAMC [14] to calculate the vector-matrix
products. In contrast to the forward mode, it is not possible with the backward mode to
evaluate (11) by just one automatic differentiation. Therefore we need to evaluate each
vector-matrix product separately. In order to reduce the computational effort for a range
of problems, we have three options to evaluate the adjoint DAE, corresponding to three
different formulations of the original DAE:

• If the DAE is of explicit ODE form, say ẏ = f(t, y), then the adjoint DAE is λ̇∗ = λ∗fy,
and only one application of AD is necessary;

• If the DAE is of the general form F (t, y, ẏ) = 0 and Fẏ is constant, then the adjoint
DAE is λ̇∗Fẏ + λ∗Fy = 0, and two applications of AD for two different vector-matrix
products are needed.

• If the DAE is of the general form F (t, y, ẏ) = 0 and Fẏ depends on t and/or y, and
consistent initialization is required, then the adjoint DAE is of the form (11), where

λ∗Fy can be evaluated by AD with reverse mode and λ̇∗Fẏ − λ
dFẏ

dt
can be evaluated by

AD with a combination of forward and reverse modes. First a routine is generated by
an application of AD with reverse mode to calculate the vector-matrix product λFẏ.
Then a routine to compute the total derivative of λFẏ with respect to time is generated
by an application of AD with forward mode.

If the adjoint DAE can be readily obtained, there is an option in DASPKADJOINT for the
user to input the adjoint DAE directly without making use of operation.

ADIFOR [3] is another AD tool. ADIFOR2.0 includes only the forward mode (ADI-
FOR3.0 has the backward mode but is not released to the public yet). If the SparseLinC
option is used, ADIFOR can evaluate the nonzero elements of the Jacobian efficiently. Af-
ter the Jacobian is computed, the vector-Jacobian product can be easily obtained. This
method still requires the evaluation of a full Jacobian, which is far more expensive than a
vector-matrix product.
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4 Initialization of the Adjoint DAE

In this section we describe the initialization procedures for the adjoint DAE with respect to
the scalar objective function g(y, T, p). From Section 2, we know that the adjoint variables
must satisfy initial conditions at time t = T . Thus, in order to reduce the computational
effort for different forms of DAE system, we have three options in DASPKADJOINT.

4.1 Index-0 and semi-explicit index-one case

The simplest case is the standard ODE form, where λT = gy can be directly computed. The
second case is when the DAE is of regular implicit form (nonsingular mass matrix Fẏ), or of
the following index-1 form:

M(t, yd)ẏd = f(t, yd, ya),

0 = h(t, yd, ya),

where yd and ya denote the differential and algebraic solution variables respectively, ∂h
∂ya is

nonsingular and the mass matrix M(t, ya) is a nonsingular square matrix. For this case, a
two-step process can be used. First we initialize the adjoint DAE for the objective function
of integral form G =

∫ T
0 g(y, t, p)dt

M(t, yd)∗λ̇d = (fyd + dM/dt− d(Mẏd)/dyd)∗λd + h∗
ydλa + gyd ,

0 = f ∗
yaλd + h∗

yaλa + gya ,

with λd(T ) = 0 to obtain consistent initial values for λ̇d and λa. λ̇d is the derivative of λd

with respect to τ . During the initialization, the values of the differential variables λd(T ) are
fixed. Second, we set λdT (T ) = λ̇d(T ) and initialize the adjoint DAE

M(t, yd)∗λ̇dT = (fyd + dM/dt− d(Mẏd)/dyd)∗λdT + h∗
ydλaT ,

0 = f ∗
yaλdT + h∗

yaλaT ,

for the objective function g(y, T, p). The differential variables λdT (T ) are fixed during the
second step. Each initialization can be done easily in DASPK3.0 [22].

For fully-implicit index-1 DAE systems

F (y, ẏ, t, p) = 0,

the initialization can be posed as a least-squares problem for

A∗λ̇+B∗λ = gy,

A∗λ = 0,

where A = ∂F
∂ẏ
|t=T and B = ∂F

∂y
|t=T . The solution of this problem is not currently imple-

mented in DASPKADJOINT.
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4.2 Hessenberg index-two DAE systems

For Hessenberg index-2 DAE systems,

ẏd = f(t, yd, ya, p),

0 = h(t, yd, p),(15)

the adjoint DAE system for the objective function g(y, T, p) is given by

λ̇d∗T = −λd∗T fyd − λa∗T hyd ,

0 = λd∗T fya .

The initial values for the adjoint variable λdT satisfy ([10])

λdT (T ) = P ∗(g∗yd + f ∗
ydλd − ḣ∗

yd(f ∗
yah∗

yd)−1g∗ya)|t=T ,(16)

or
λd∗T (T ) = (gyd + λd∗fyd − gya(hydfya)−1ḣyd)P |t=T ,(17)

where λd∗ = −gya(hydfya)−1hyd is the adjoint variable for the objective function G =
∫ T
0 g(t, y, p)dt, P = I − fy(hyfy)

−1hy is a projection matrix for the original index-2 sys-

tem, and ḣyd is the total derivative of hyd with respect to t, ḣyd = hydt + (hyd ẏd)yd . Note

that fyd , fya , hyd and ḣyd are matrices, and the initialization in this case is much more com-
plicated. In the following, with the help of an AD tool and the options of DASPK3.0, we
give a matrix-free implementation.

The matrix-free initialization procedure can be split into four steps. First we compute
λd∗(T ) = −gya(hydfya)−1hyd |t=T by solving the following initialization problem

λ̇d∗1 = λd∗1 fyd + λa∗1 hyd ,

0 = λ̇d∗1 fya − λd∗1
˙fya − gya ,(18)

for λ̇d1(T ) and λa1(T ) with λd1(T ) = 0 fixed. In (18), ˙fya represents the total derivative of
fya with respect to t. Note that λa∗1 (T ) = gya(hydfya)−1|t=T , and λd∗(T ) = −λ̇d∗1 (T ) =
−gya(hydfya)−1hyd |t=T . If gya = 0, then λd∗(T ) = 0.

In step 2, we calculate

v1 = gyd + λd∗fyd − gya(hydfya)−1ḣyd |t=T = gyd + λd∗fyd − λa∗1 ḣyd |t=T .(19)

If gya = 0, then v1 = gyd |t=T and we can go directly to step 3. λd∗fyd can be calculated easily

by an AD tool with reverse mode. The calculation of λa∗1 ḣyd is more troublesome. If hyd is a

constant matrix then λa∗1 ḣyd = 0. Otherwise, an AD tool with a combination of reverse and

forward modes is used to evaluate λa∗1 ḣyd . λa∗1 hyd is first calculated by a reverse mode AD
tool. Then the vector-matrix product is differentiated explicitly by a forward mode AD-tool
with respect to t and yd.

In step 3, we calculate the initial values of λdT

λd∗T (T ) = v1P |t=T = v1(I − fya(hydfya)−1hyd)|t=T ,(20)
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by initializing the following system

λ̇d∗2 = λd∗2 fyd + λa∗2 hyd + v1,

0 = λ̇d∗2 fya − λd∗2
˙fya ,(21)

with λd∗2 (T ) = 0 fixed. Noting that λa∗2 (T ) = −v1fya(hydfya)−1|t=T and λ̇d∗2 = v1(I −

fya(hydfya)−1hyd)|t=T , we set λdT (T ) = λ̇d∗2 (T ).
In step 4, we initialize the adjoint system for the objective function g(y, T, p) by fixing

the value of λd∗T (T ). The index-2 constraints must be differentiated during the initialization,
which results in

λ̇d∗T = λd∗T fyd + λa∗T hyd ,

0 = λ̇d∗T fya − λd∗T
˙fya ,(22)

where λdT (T ) is fixed and λ̇dT (T ) and λaT (T ) are computed.
The DAE systems (18) and (21) have the same format except for the forcing terms.

Therefore, we can solve them efficiently using the same algorithm. The second equation of
the adjoint DAE system (22) is actually the derivative of the index-2 constraint λdfya with
respect to reversed time τ . DASPKADJOINT has a mechanism to differentiate the index-2
constraints and then to perform the initialization for index-2 DAE systems in DASPK3.0
[21].

For index-2 DAE systems which are not explicitly in Hessenberg form, but which have a
nonsingular square mass matrix, i.e.,

M(t, yd)ẏd = f(t, yd, ya),

0 = h(t, yd),(23)

where M(t, yd) is a nonsingular square matrix, the adjoint system is

M(t, yd)∗λ̇dT = (fyd + Ṁ − (Mẏd)yd)∗λdT + h∗
ydλaT ,(24)

0 = f ∗
yaλdT .

The initial values for the adjoint variables λdT satisfy

λd∗T =

(

λ̇d − gya(hydM−1fya)−1d(hydM−1)

dt

)

P,

=
((

gyd + λd∗(fyd + Ṁ − (Mẏd)yd)
)

M−1 − gya(hydM−1fya)−1(ḣydM−1 − hydM−1ṀM−1)
)

P

=
(

gyd + λd∗(fyd − (Mẏd)yd)− gya(hydM−1fya)−1ḣyd

)

M−1P

= (gyd − λd∗Fyd − λa∗1 ḣyd)M−1P

= v1M
−1P

at t = T , where λd∗ = −gya(hydM−1fya)−1hydM−1, P = I − fya(hydM−1fya)−1hydM−1,

F = Mẏd− f(yd, ya, p), λa∗1 = gya(hydM−1fya)−1, and v1 = gyd −λd∗Fyd −λa∗1 ḣyd . The above
initialization procedures for Hessenberg form can still be used by replacing the adjoint DAE
system with (24).
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5 Implementation

In this section we outline some of the issues for implementation of the adjoint method for
DAE sensitivity analysis. We use our software DASPK3.0 [21] as the backbone DAE solver.

DASPK3.0 already includes a forward method to compute the sensitivity efficiently. It
might seem appealing to incorporate the adjoint method into it without introducing another
name. However, the adjoint DAE requires the solutions of the state variables before it
begins the backward integration. In fact, the main solver of DASPK3.0 is used frequently
by the adjoint method. Moreover, the adjoint method needs many arguments and routines
that are never used in the integration of the state variable or in the forward sensitivity
method. To maintain the compatibility of DASPK3.0 with previous versions of DASPK
and DASSL without introducing too many unnecessary complications for the integration of
the state equations, we have introduced another program DASPKADJOINT to take care of
the adjoint method, and have modified DASPK3.0 only slightly to accommodate its use by
DASPKADJOINT.

The implementation of DASPKADJOINT consists of three major steps. First, we must
solve the original ODE/DAE forward to a specific output time T . Second, at time T ,
we compute the consistent initial conditions for the adjoint system. The consistent initial
conditions must satisfy the boundary conditions of (6). Finally, we solve the adjoint system
backward to the initial point, and calculate the sensitivities.

5.1 Checkpointing technique

In the adjoint system (8) and the sensitivity calculation (9), the derivatives Fy, Fẏ and Fp

may depend on the state variables y, which are the solutions of the original DAEs. Ideally,
the adjoint DAE (8) should be coupled with the original DAE and solved together as we
did in the forward sensitivity method. However, in general it is not feasible to solve them
together because the original DAE may be unstable when solved backward. Alternatively,
it would be extremely inefficient to solve the original DAE forward any time we need the
values of the state variables.

With enough memory, we can store all of the necessary information about the state
variables at each time step during the forward integration and then use it to obtain the
values of the state variables by interpolation during the backward integration of the adjoint
DAEs. For example, we can store y and ẏ at each time step during the forward integration
and reconstruct the solution at any time by cubic Hermite interpolation1 during the backward
integration. The memory requirements for this approach are proportional to the number of
time steps and the dimension of the state variables y, and are unpredictable because the
number of time steps varies with different options and error tolerances of the ODE/DAE
solver.

To reduce the memory requirements and also make them predictable, we use a two-level
checkpointing technique. First we set up a checkpoint after every fixed number of time
steps during the forward integration of the original DAE. Then we recompute the forward
information between two consecutive checkpoints during the backward integration by starting

1We could of course consider basing the interpolant on the interpolating polynomial underlying the BDF
formula, but this is more complicated, requires more storage, and it not as smooth.
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the forward integration from the checkpoint. This approach needs to store only the forward
information at the checkpoints and at fixed number of times between two checkpoints.

In the implementation we allocated a special buffer to communicate between the forward
and backward integration. The buffer is used for two purposes: to store the necessary
information to restart the forward integration at the checkpoints, and to store the state
variables and derivatives at each time step between two checkpoints for reconstruction of the
state variable solutions during the backward integration.

In order to obtain a fixed number of time steps between two consecutive checkpoints,
the second forward integration should make exactly the same adaptive decisions as the first
pass if it restarts from the checkpoint. Therefore, the information saved at each checkpoint
should be enough that the integration can repeat itself. In the case of DASPK3.0, the
necessary information includes the order and stepsize for the next time step, the coefficients
of the BDF formula, the history information array of the previous k time steps, the Jacobian
information at the current time, etc.. To avoid storing Jacobian data (which is much larger
than other information) in the buffer, we enforce a reevaluation of the iteration matrix at
each checkpoint during the first forward integration.

If the size of the buffer is specified, the maximum number of time steps allowed between
two consecutive checkpoints and the maximum number of checkpoints allowed in the buffer
can be easily determined. However, the total number of checkpoints is problem-dependent
and unpredictable. It is possible for some applications that the number of checkpoints is
also too large to be held in the buffer. We then write the data of the checkpoints from the
buffer to a disk file and reuse the buffer again. Whenever we need the information on the
disk file, we can access it from the disk. We assume that the disk is always large enough to
hold the required information.

5.2 Program structure

The forward integration may be performed twice (if checkpointing is used) but only one
initialization is required. Hence, if consistent initialization for the state variables is re-
quired, DASPKADJOINT always performs the initialization first without the integration.
Then DASPKADJOINT performs the forward integration of the state variables by calling
DASPK3.0. We return from DASPK3.0 after every time step to see if a checkpoint has
been encountered. At the checkpoint, the necessary information to repeat the integration
from the checkpoint is stored. After the forward integration is completed, we calculate the
objective function and its gradients with respect to y and p. Then we initialize the adjoint
DAE. Several options have been provided for index-0, index-1 and index-2 DAE systems.
The next step is the backward integration. In each checkpointing interval, we first recover
the data at the checkpoint and then start the forward integration from there. The state
variables and their time derivatives at each time step are stored to be accessed later by
the backward integration. After the internal forward integration has been completed, we
integrate the adjoint system backward to the checkpoint. This process is repeated for each
checkpoint until t = t0 is reached. Finally, we calculate the sensitivity based on the adjoint
variables at t = t0.

We remark that our program structure can be used for any adjoint DAE solver. It is
not limited to the DASPK3.0 and DASPKADJOINT. However the backbone forward DAE
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solver needs to be modified slightly. In the following subsections, we will describe how to
make those changes.

5.3 Jacobian or preconditioner evaluation and Newton solver

For an implicit ODE/DAE solver (e.g., BDF, SIRK), a Jacobian (or preconditioner) is re-
quired for solving the nonlinear system at each time step. When the mass matrix Fẏ is
constant, the Jacobian for the adjoint DAE is exactly the transpose of the Jacobian for the
original DAE. Therefore we can evaluate the Jacobian of the original DAE and transpose it
to obtain the Jacobian for the adjoint DAE.

If Fẏ depends on either t or y, we solve the augmented adjoint DAE (14). The Jacobian
for (14) is

(

CJ · I F ∗
y

I −F ∗
ẏ

)

where CJ is a scalar coefficient determined by DASPK3.0. If we solve only for λ, then
the second column is multiplied by −CJ and added to the first column, which yields the
Jacobian for λ only, CJ · F ∗

ẏ + F ∗
y , which remains the transpose of the original Jacobian for

the forward integration.
The adjoint system is a linear time-varying system. The Newton solver can converge in

one iteration if the Jacobian is up to date. In DASPK3.0, the convergence test of the Newton
solver is

ρ

1− ρ
||y(m+1) − y(m)|| < 0.33(25)

where the rate of convergence ρ is given by

ρ =

(

||y(m+1) − y(m)||

||y(1) − y(0)||

)1/m

.

If the Newton solver converges in one iteration, ρ can be very small and is passed on to
future time steps. The near-zero ρ can make (25) satisfied even if ||y(m+1) − y(m)|| is large.
The large value of ||y(m+1) − y(m)|| can yield bad results if the Jacobian is not current. This
is a deficiency in the convergence test of DASPK3.0 (and previous versions), but to our
knowledge it has never before been the source of difficulty because unlike the adjoint DAE,
the vast majority of DAEs solved in practice are nonlinear.

There are two options to fix the convergence test for the adjoint system: force a Jacobian
evaluation or force a recalculation of the convergence rate on every time step. Because a Ja-
cobian evaluation takes much more time than a function evaluation, we force a recalculation
of the convergence rate on every time step for the adjoint method using DASPK3.0. The
initial value of ρ is always 0.99.

5.4 Krylov iterative method

For the Krylov iterative method, we need to evaluate the matrix-vector product

u = (αF ∗
ẏ + F ∗

y )v.(26)
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Since we already have a mechanism to evaluate vFẏ and vFy when we evaluate the adjoint
DAE, (26) can be evaluated directly.

A preconditioner must be provided by the user for the Krylov iterative method in
DASPK3.0. The preconditioner provided by the user usually works well for the forward
integration of the state variables and for the forward sensitivity computation. However, it
is not always a simple matter to apply this preconditioner for the adjoint system. Because
the Jacobian for the adjoint system is the transpose of the forward Jacobian, a transpose of
the preconditioner is needed. If a matrix-free method has been used to construct the pre-
conditioner for the forward system, it is difficult to transpose the preconditioner and apply
it to the adjoint system. On the other hand, if the Jacobian matrix is constructed during
computation of the preconditioner as, for example, with the incomplete LU factorization
(ILU) preconditioner, the preconditioner for the adjoint system can easily be obtained by
transposing the Jacobian first and then doing the incomplete LU factorization.

5.5 Error estimation

Two of the most important decisions that an adaptive DAE solver must make on each step
are whether to accept the results of the current step and what stepsize should be used on
the next step. Both of these decisions are based on the error estimate. DASSL/DASPK
estimates the local truncation error, but it is not obvious how this should be implemented
for the adjoint solution.

To get a better understanding, consider applying the implicit Euler method to the aug-
mented adjoint system (14),

λ̄n+1 − λ̄n
hn+1

+ F ∗
y λn+1 = 0,(27)

λ̄n+1 − F ∗
ẏ λn+1 = 0.

The true solution to (14) satisfies

λ̄(tn+1)− λ̄(tn)−
h2

n+1

2
λ̄′′(ξ)

hn+1

+ F ∗
y λ(tn+1) = 0,(28)

λ̄(tn+1)− F ∗
ẏ λ(tn+1) = 0.

Subtracting (28) from (27), we obtain

ēn+1 − ēn +
h2

n+1

2
λ̄′′(ξ)

hn+1

+ F ∗
y en+1 = 0,

where ēn = λ̄n − λ̄(tn) and en = λn − λ(tn). Thus the local truncation error (the amount
by which the true solution fails to satisfy the difference formula) depends on λ̄′′ rather than
on λ′′. Therefore, the error estimate should be based on λ̄. Since the errors in the algebraic
variables on previous time steps do not directly influence the errors in any of the variables at
the current time [24], we can consider removing λ from the error estimate in order to promote
the smooth operation of a code. However, the value of λ is important and determines the
accuracy of the sensitivities. So for the λ variables which are index-1 in the augmented
adjoint system, we opted to include them and to exclude those which are index-2.
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5.6 Sensitivity calculation

The integral in equation (9) can be computed either outside DASPK after each time step or
as a quadrature variable during the solution of the adjoint DAE. If the quadrature variable
method is chosen, we append a variable, say λN+1, and an equation

λ̇N+1 = λ∗
TFp

to the original adjoint system. Then

λN+1|t=0 =
∫ T

0
λ∗
TFpdt.

λN+1 is called a quadrature variable in DASPK3.0 and is calculated efficiently [21] without
participating in Newton iterations and Jacobian evaluations via a staggered method. The
other terms in (9) are easily obtained: λ∗Fp and λTFẏ can be computed by an AD tool with
reverse mode.

(y0)p is the Jacobian matrix of the initial condition y0 with respect to the sensitivity
parameter p. When p is the initial condition for an ODE (or implicit ODE), (y0)p = I is
the identity matrix. For an index-1 or index-2 system, (y0)p must be consistent with the
algebraic constraints and/or any hidden constraints. (y0)p can either be input by the user
or evaluated by an AD tool. When the number of parameters is large, the matrix (y0)p is
huge. However, the number of nonzero elements in (y0)p may be small. A sparse format to
store and compute (y0)p is necessary.

For the Hessenberg index-2 DAE system (15), the value of λa∗ is required when hp 6= 0,
because λa∗hp should be calculated in the sensitivity (9). To solve for λa∗ correctly in (19),

we need the value of
dgya

dt
, which is difficult for the user to provide. However, there is

an additional term for the sensitivity (9) if hp 6= 0, which is d
dt
(−gya(hydfya)−1hp). The

combination of the two terms will be

(λd∗fp + λa∗hp) +
d

dt
(−gya(hydfya)−1hp)

= λd∗fp − λa∗1 ḣp +

(

λa∗ −
dgya

dt
(hydfya)−1 + gya(hydfya)−1

(

ḣydfya + hyd ḟya

)

(hydfya)−1

)

hp

= λd∗fp − λa∗1 ḣp + (λa∗hyd − λ̇d∗ + λa∗1 ḣyd)fya(hydfya)−1hp

= λd∗fp − λa∗1 ḣp + λa∗2 hp,

where λd∗fya + gya = 0 is used, and λa∗1 = −gya(hydfya)−1 and λa∗2 = −(gyd + λd∗fyd −

λa∗1 ḣyd)fya(hydfya)−1 can be obtained from equations (18) and (21) respectively. It can be
verified that the last equation is also valid for the case of non-Hessenberg form given by (23).

6 Obtaining Numerical Sensitivities with DASPKAD-

JOINT

6.1 Getting started with DASPKADJOINT

DASPKADJOINT is designed to be as easy to use as possible, while providing enough flex-
ibility and control for solving a wide variety of problems. It is extensively documented
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in the source code. The user interface for DASPKADJOINT is based on the interface for
DASPK3.0, with a few changes which are necessary for the adjoint DAE and the sensitivity
calculation. Since DASPKADJOINT is designed based on DASPK3.0, we strongly recom-
mend that the user read the documentation for DASPK3.0 first. In this subsection, we
outline what a user must do to compute the sensitivities of a vector of objective functions
with DASPKADJOINT.

We emphasize that DASPKADJOINT is designed for solving index-zero, index-1 and
index-2 DAE systems with nonsingular mass matrix. The DAE system and its initial condi-
tion are posed as

F (t, y, y′) = 0

y(t0) = y0(29)

y′(t0) = y′0,

where F , y and y′ are Ny dimensional vectors. As in DASPK3.0, the function F in (29) is
defined in a subroutine RES which is written by the user. RES has the same argument list
as in DASPK3.0. It takes T and the vectors Y and YPRIME as inputs, and produces an
output vector DELTA, where DELTA = F(T,Y,YPRIME). The subroutine has the form

SUBROUTINE RES(T,Y,YPRIME,CJ,DELTA,IRES,RPAR,IPAR,SENPAR)

The parameter CJ can be ignored or used to scale the algebraic constraints if necessary.
IRES is an integer flag. Depending on the value of IRES, RES can be used to define the
residuals for different situations. If IRES=0, RES is used to define the residuals for the
state equations excluding the quadrature equations; if IRES=2, RES is used to define the
residuals of the time derivatives of the index-2 constraints; if IRES=3, RES is used to define
the residuals for the quadrature equations. IRES is also used to flag situations where an
illegal value of Y or a stop condition has been encountered. The user would set IRES=-1
and return without evaluating the function in those situations. RPAR and IPAR are real
and integer vectors respectively, and are at the user’s disposal to use for communication
purposes. SENPAR is a real parameter array for sensitivity computation. It contains only
those sensitivity parameters that appear in RES. Those parameters that appear only in the
initial conditions are not stored in SENPAR.

In DASPK3.0, we suggest that the user scale the index-2 constraints by CJ for an index-2
DAE system to reduce the round-off error [6]. The index-2 constraints correspond to the
index-2 variables in the adjoint DAE system and the index-2 variables in the original DAE
correspond to the index-2 constraints in the adjoint DAE system. Therefore, we must scale
the index-2 variables by 1/CJ and scale the index-2 constraints by CJ in the adjoint DAE
system. Similarly, the Jacobian should be evaluated in a different way for the index-2 system.
The transpose of the original DAE needs scaling of some rows and columns to become the
Jacobian of the adjoint DAEs. Specifically, the rows corresponding to the index-2 constraints
should be scaled by CJ, and the columns corresponding to the index-2 variables should be
scaled by 1/CJ.

Another routine the user must provide is the subroutine that defines the objective function
G = g(t, y, p) and/or its partial derivatives with respect to y and p. The user has an option
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to define the function G only and let DASPKADJOINT compute the gradient with respect
to y and p through a finite-difference method or automatic differentiation. This subroutine
has the form

SUBROUTINE QRES(T,Y,YPRIME,QSEN,IRES,RPAR,IPAR,SENPAR)

The parameter QSEN is a real array that contains the value of G and its partial derivatives.
QSEN has dimension at least Ng(Ny+1+Np), where Ng is the number of objective functions
and Np is the total number of sensitivity parameters. On return from DASPKADJOINT,
QSEN stores the sensitivity information.

To get started, the initial values of T, Y and YPRIME must be given. If they are not
consistent, a consistent initialization option has to be chosen, which is specified in the INFO
array. The call to DASPKADJOINT is

CALL DDASPKADJOINT(

RES, NEQ, T, Y, YPRIME, TOUT, INFO, RTOL, ATOL,

IDID, RWORK, LRW, IWORK, LIW, RPAR, IPAR, JAC, PSOL, SENPAR,

ADRES, NQ, QRES, QSEN, INFOB, RTOLB, ATOLB, NBUF,

ADJAC, IEOPT, RES_ADP, RES_ADY, G_RES_ADY, G_RES_ADYP,

ADINIT, K_RES, T_RES, G_RES_ADP)

The parameters are described in detail in the documentation of DASPK3.0 and DASPKAD-
JOINT, so we will only discuss a few features here. Many of these features are activated by
setting an element of the option vectors INFO and INFOB to a positive number. INFO is
for the solution of the state variable Y. INFOB is for the evaluation of the adjoint system
and the sensitivity computation. Setting up the INFO array for DASPKADJOINT is almost
the same as for DASPK3.0 with the exception of a few changes that are documented in the
source code of DASPKADJOINT. INFOB is new for DASPK users.

INFOB(1) is used to set up the error tolerance for the adjoint variables. Since the adjoint
DAE uses the numerical solutions of the state variables, the default tolerances for the adjoint
variables are double the tolerances that are used for the state variables. The user can input
different tolerances in RTOLB and ATOLB by setting INFO(1)=1.

INFOB(2) is for the consistent initialization of the adjoint DAE. Consistent initial con-
ditions for the adjoint DAEs are very easy to obtain for an explicit ODE. However for an
implicit ODE or a DAE, especially an index-2 DAE, the initial conditions are complicated.
Although the user might want to input the consistent initial conditions for efficiency by
setting INFO(2)=3 and providing routine ADINIT

SUBROUTINE ADINIT(T,NEQ,NQ,Y,YPRIME,ADY,ADYPRIME,QSEN,

RPAR,IPAR,SENPAR)

we strongly recommend the user let DASPKADJOINT compute the consistent initial con-
ditions by setting INFOB=0,1,2, which corresponds to explicit ODE, index-0 and index-1
DAE, and index-2 DAE respectively.

INFOB(3) is for the evaluation of the adjoint DAE system. The adjoint system can be
constructed either by AD tools inside DASPK3.0, or by the user outside DASPK3.0. If
AD is chosen, the AD-generated routine must be provided by the user. In our interface,
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we have a fixed argument list for the AD-generated routine. However, the AD-generated
routines by some AD-tools, for example TAMC, may have different argument lists from
what we require. Therefore, the user needs to modify the argument list of the AD-generated
routine so that the arguments match correctly with the interface. A simple way to do
that is to write a wrapper for the AD-generated routine. ADRES, RES ADP, RES ADY,
G RES ADY, G RES ADYP, and G RES ADP are the AD-generated routines. However,
not every routine is required for a specific problem. Depending on what option you have
used for the evaluation, some routines may be ignored or declared as dummys.

• ADRES is required when Fẏ is not the identity. It calculates the vector-matrix product
vFẏ.

• RES ADP is required when the sensitivity parameters appear in the RES routine
explicitly, i.e., the dimension of SENPAR is greater than zero. It calculates the vector-
matrix product vFp.

• RES ADY is required except when the user chooses to evaluate the adjoint system
outside DASPK3.0. It calculates the vector-matrix vFy.

• G RES ADY is required for the initialization of an index-2 DAE system. It computes
the total time derivative of the vector-matrix product λ∗Fy.

• G RES ADYP is required for the initialization of the adjoint system when Fẏ depends
on t and/or y. It computes the total time derivatives of the vector-matrix product
λ∗Fy′ .

• G RES ADP is required for the sensitivity calculation of an index-2 DAE system where
the sensitivity parameters appear explicitly in the RES. It calculates the total time
derivatives of the vector-matrix product λ∗Fp.

If the user chooses to evaluate the adjoint DAE system outside DASPK3.0, ADRES should
be provided and has the following argument list

SUBROUTINE ADRES(T,ADY,ADYPRIME,CJ,DELTA,IRES,RPAR,IPAR,SENPAR,Y)

where Y represents the state variables, and ADY and ADYPRIME represent the adjoint
variables and their time derivatives.

An index-2 DAE system requires special scaling in the constraints and the Jacobian. If
the system is of index-2, INFOB(5) must be set to 1 and an IEOPT array must be provided
to indicate which equations are index-2 constraints and which variables are index-2 variables.
IEOPT should be set as

• IEOPT(i) = -1, if the ith equation is an index-1 constraint;

• IEOPT(i) = -2, if the ith equation is an index-2 constraint;

• IEOPT(i) = 1, if the ith equation is a differential equation.

• IEOPT(i+NEQ)=1,2 or 3 if Y(I) is a differential variable;
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• IEOPT(i+NEQ) = -1, if Y(I) is an index-1 algebraic variable;

• IEOPT(i+NEQ) = -2, if Y(I) is an index-2 algebraic variable;

The sensitivity calculation requires the value of λ∗Fẏy0p if there are some sensitivity
parameters in the initial condition y0. Usually the initial values of the sensitivities are very
simple, and y0p contains a few nonzero elements. Although DASPKADJOINT has an option
to compute the sensitivities, it requires the user to input the dense form of y0p, which might
be huge if both Ny and Np are very large. Hence the default option inside DASPKADJOINT
is to calculate λ∗Fẏ only and store it in QSEN. If the user still wants DASPKADJOINT to
compute λ∗Fẏy0p, then set INFOB(6)=1 and provide consistent initial values of y0p in the Y
array

If the checkpointing technique is used, the solution of the state variables will need two
runs for the adjoint sensitivity method. In the first run, the information at the checkpoints is
stored. In the second run, which begins at each checkpoint, the solution of the state variables
is stored. These two runs can be reduced to one if the allocated storage is large enough to
store the state variables and their time derivatives for every step. Usually, a roughly estimate
of the number of time steps needed for the state integration is readily available from previous
simulations. Then DASPKADJOINT can make a decision prior to the integration whether
the checkpointing technique is needed or not. If the number of time steps for the state
integration is known or can be estimated, set INFOB(7) to the upper bound on the number
of time steps. DASPKADJOINT will check this number against the size of the allocated
storage to see if one run of the state system is enough. If the user does not have an upper
bound on the number of time step needed for the forward integration in advance, then set
INFOB(7)=0 and DASPKADJOINT will use the checkpointing technique.

If the DAE system is linear with respect to y and ẏ, then the adjoint system is independent
of the state variables y and ẏ. Hence there is no need to allocate space to store the state
variables. Only one run of the forward integration is enough. This option can be chosen by
specifying INFOB(3)>3.

Since our goal is to calculate the sensitivities instead of the adjoint variables, we do not
insert the adjoint variables and their time derivatives in the argument list of DASPKAD-
JOINT. Instead they use some space in the RWORK array. The RWORK array not only
serves as a real work array for the forward state integration, but also server as a real work
array for the backward integration. It also serves as the buffer to communicate between the
forward and backward integration. The size of RWORK is important for the efficiency of our
computation. It should be set as large as possible, because a larger RWORK array means a
larger buffer, which then contains more data that can be accessed without resort to a disk
file that can slow down the computation.

Finally, we have a few comments on the output of DASPKADJOINT. Unlike DASPK,
DASPKADJOINT does not output any sensible sensitivities at intermediate times between
T0 and TOUT. If the integration process was interrupted before the task was completed,
the user must check the IDID parameter for error messages. Otherwise, on a normal return,
the Y array contains the computed solution for the state variables at TOUT. QSEN con-
tains the values of the objective functions and the sensitivity information. Depending on
the option the user sets in INFOB(6), the user may need to calculate the sensitivity after
calling DASPKADJOINT. Performance data for the backward integration is stored in the
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IWORK and RWORK arrays and can be accessed by the user (see the documentation of
DASPKADJOINT).

6.2 Efficiency of the adjoint sensitivity method

In this subsection we compare the adjoint sensitivity method with the forward sensitivity
method. Suppose the cost of the forward integration for N state variables is Cf , the cost of
the forward integration for N sensitivity variables is Cfs, the cost of the backward integration
for N adjoint variables is Cbs, the number of parameters is np, and the number of objective
functions is nf . Our implementation of the adjoint sensitivity method includes two forward
integrations and one backward integration2. The total cost is roughly

Casm = 2Cf + C∗
bs + (nf − 1)Cbs,

where C∗
bs denotes the cost for the first objective function, which is more costly than the

others because it involves the Jacobian evaluation. The total cost for the forward sensitivity
method to perform the equivalent computation is roughly

Cfsm = Cf + npCfs.

The computational efficiency and memory requirements for the forward sensitivity method
are roughly proportional to the number of sensitivity parameters and are insensitive to
the number of objective functions. For the adjoint sensitivity method, the computational
efficiency and memory requirements are proportional to the number of objective functions
and are insensitive to the number of sensitivity parameters. Thus the two methods are
complementary. The adjoint sensitivity method is advantageous over the forward sensitivity
method when the number of sensitivity parameters is large and the number of objective
functions is small.

The adjoint sensitivity method has a disadvantage that it can only compute the sensitivity
at a specific output time. Unlike the forward sensitivity method, the intermediate results of
the adjoint variables have no physical meaning.

7 Numerical Experiments

In this section we give some examples to demonstrate the effectiveness and efficiency of the
adjoint sensitivity method as implemented in DASPKADJOINT. In all of our examples, the
tolerance for the adjoint variables has been taken to be double the tolerance for the state
variables. The integration methods used are the direct method (D) and Krylov method (K).
The sensitivity methods are the forward sensitivity method (F) from DASPK3.0 [21] and the
adjoint sensitivity method (A). Therefore, we use AD to represent the adjoint direct method,
AK to represent the adjoint Krylov method, FD to represent the forward direct method, and
FK to represent the forward Krylov method. The computations were performed on a Linux
machine with Pentium III 450MHZ CPU.

2This assumes that checkpointing is used. If checkpointing is not needed, it requires only one forward
integration.
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7.1 ODE case

7.1.1 2-D Heat equation

We first consider the heat equation

ut = p1uxx + p2uyy,(30)

posed on the 2-D unit square with zero Dirichlet boundary conditions. An M + 2 by M + 2
mesh is set on the square with uniform spacing 1/(M + 1). The spatial derivatives are
represented by standard central finite difference approximations. At each interior point of
the mesh, the discretized PDE becomes an ODE for the discrete value of u. At each point
on the boundary, we pose the equation ut = 0. The discrete values of u form a vector
U , ordered first by x, then by y. The result is an ODE system G(t, U, U ′) = 0 of size
NEQ = (M + 2)× (M + 2). Initial conditions are posed as

ut=0 = 16x(1− x)y(1− y).

The sensitivity parameters consist of p1 = p2 = 1.0 and the initial values ut=0. The problem
was solved previously by DASPK3.0 with M=40 in [21]. To compute the sensitivities by the
adjoint method, we used the time interval [0, 0.16], and the error tolerances for DASPK3.0
were taken as RTOL = ATOL = 1.0e-5. The size of the buffer was set to such a number
that it allows 9 time steps between two consecutive checkpoints, and the maximum number
of checkpoints the buffer allows was set to 3. There are a total of 10 checkpoints during the
forward integration of the state variables, and the information at the checkpoints has to be
written to the disk file three times. For the direct method, we used the ADIFOR option
with SparseLinC to generate the Jacobian. For the Krylov method, we used the incomplete
LU (ILU) preconditioner, which is part of the DASPK package. The Jacobian for the ILU
preconditioner was also evaluated by ADIFOR with the SparseLinC option. We compared
the results with that of the forward sensitivity method where the sensitivity residuals are
evaluated by ADIFOR with the seed matrix option. Due to memory restrictions, we used
only 20 sensitivity parameters (including p1 and p2) in the forward sensitivity method. For
comparison, we used two objective functions:

g1 =
NEQ
∑

1

u2
i ,

g2 =
∫ T

0

NEQ
∑

1

uidt,

where g2 is treated as a quadrature variable. Table 1 gives the results of the adjoint and
forward methods.

Figure 1 shows the sensitivities of the objective functions with respect to the initial
conditions. We chose the points between 13 and 27 in the 20th row on the 42×42 mesh as
our sample points for the figure.
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ETH NP g1 w.r.t. p1 g2 w.r.t. p1 RWORK size IWORK size CPU
FD 20 -15.21783 -2.72675 669025 10630 44.15
FD 10 -15.21783 -2.72675 457205 10630 24.40
AD 1766 -15.21831 -2.72685 563563 12462 21.11
FK 10 -15.21782 -2.72675 329420 83868 15.39
AK 1766 -15.21794 -2.72667 235388 167751 6.63

Table 1: Results for heat equation example. NP is the number of sensitivity parameters.

7.1.2 Index-0 DAES with state-dependent mass matrix

We also tested the case when the coefficient matrix Fẋ is not constant. Consider the system

(

y1 y2

−y2 y1

)(

ẏ1

ẏ2

)

=

(

0
−(y2

1 + y2
2)

)

,(31)

with initial conditions y1(0) = 0, y2(0) = 1. We used the time interval [0,1.57] and the
objective function g(y) = y1 + y2 in the test. The sensitivity parameters were taken to be
y1(0) and y2(0). The augmented adjoint system for g is

λ̄−

(

y1 −y2

y2 y1

)

λ = 0,

˙̄λ+

(

y′1 y′2 + 2y1

y′2 −y′1 + 2y2

)

λ = 0.

We used the error tolerances ATOL = 10−9, RTOL = 10−7 for DASPK3.0 in the test. The
results were

ETH g w.r.t. y1(0) g w.r.t. y2(0)
FD -0.999204383 1.00079725
AD -0.999203795 1.00079653

true solution -0.999203356 1.00079601

This example illustrates the need for the modifications to the DASPK3.0 error test and
Newton convergence test strategies described earlier for solving the augmented adjoint sys-
tem. It can be shown that when y1 = sin(t) and y2 = cos(t), λ̇ = 0. If we base the error
estimate only on λ, which may at first glance seem to be natural, it results in a large number
of error test failures. The reason is that according to the dynamics of λ, DASPK3.0 tries
with this error estimate to double the stepsize at almost every time step. However, the local
truncation error is determined by λ̄ instead of λ, so these large stepsizes fail based on the
dynamics of λ̄. We also observed that if we did not force a recalculation of the convergence
rate ρ during the Newton iteration, a large error can occur in λ if we base the error test only
on λ̄. The results are good and the code operates efficiently when we base the error test on
both λ and λ̄, or base the error test only on λ̄ and recalculate the convergence rate. Table
2 gives the results of the different options for the error control and convergence tests.
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Figure 1: Sensitivities of the objective functions with respect to the initial conditions for the heat equation
example. The x-axis represents the order number of the points.

7.2 Index-1 DAE case

7.2.1 2-D food web problem

We consider a multi-species food web [8], in which mutual competition and/or predator-prey
relationships in the spatial domain are simulated. Specifically, the model equations for the
concentration vector c = (c1, c2)T are

c1
t = f1(x, y, t, c) + d1(c

1
xx + c1

yy),
0 = f2(x, y, t, c) + d2(c

2
xx + c2

yy),

with

fi(x, y, t, c) = ci(bi +
2
∑

j=1

aijc
j).

The coefficients aij, bi, di are

aii = −1, i = 1, 2;
a12 = −0.5 · 10−6, a21 = 104;
aij = e, i > p and j < p;
b1 = 1 + αxy + β sin(4πx) sin(4πy)) = −b2,
d1 = 1, d2 = 0.05.
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Error control Recalculate ρ NSTP NRES NJAC NETF NNL Errmax

λ̄ No 64 245 31 7 121 0.6025
λ, λ̄ No 144 383 31 7 259 8.0e-7
λ No 2662 28486 4174 2660 11790 5.65e-4
λ̄ Yes 61 254 28 7 142 7.0e-7

λ, λ̄ Yes 86 317 28 7 205 1.4e-7
λ Yes 2662 28487 4174 2660 11791 5.65e-4

Table 2: Results for example (31). Errmax is the maximum error in λ. NSTP is the number of time steps,
NRES is the number of function evaluations, NJAC is the number of Jacobian evaluations, NETF is the
number of error test failures and NNL is the number of nonlinear iterations. There are no convergence test
failures in any of the tests.

The domain is the unit square 0 ≤ x, y ≤ 1. The boundary conditions are of Neumann
type with normal derivative equal to 0. The PDEs are discretized by central differencing
on an M by M mesh. We have taken M=20. Therefore the resulting DAE system has size
NEQ = 2M 2 = 800. The DASPK3.0 tolerances used were RTOL = ATOL = 10−5.

For sensitivity analysis, α and β were taken as the sensitivity parameters, with nominal
values α = 50 and β = 100. The initial conditions were taken as

c1
0 = 10 + (16x(1− x)y(1− y))2,
c2
0 = 100,

which do not satisfy the constraint equations. Therefore, a consistent initialization is re-
quired. For comparison, we also took the initial values c1

0 as sensitivity parameters. Unlike
the ODE case, we cannot take both c1

0 and c2
0 as independent sensitivity parameters, be-

cause c2
0 are index-1 variables and they depend on c1

0. We used the time interval [0, 5], and
tolerances for DASPK3.0 of RTOL = ATOL = 10−5. For the adjoint method, the size of
the buffer was set to such a number that it allows 12 time steps between two consecutive
checkpoints. The maximum number of checkpoints the buffer allows was set to 4. There
are a total of 10 checkpoints during the forward integration of the state variables, and the
information at the checkpoints has to be written to the disk file twice. We used two identical
objective functions

g1 =
NEQ
∑

1

u2
i ,

g2 = g2.

Table 3 gives the results for the adjoint and forward methods. Note that the storage re-
quirement (RWORK) and the CPU time for the forward sensitivity method are proportional
to the number of sensitivity parameters, whereas for the adjoint method they remain the
same.

22



ETH NP g1 w.r.t. p1 g1 w.r.t. p2 RWORK size IWORK size CPU
FD 20 6467.01 3287.73 312890 4840 26.77
FD 10 6467.01 3287.73 208870 4840 14.73
FD 2 6467.01 3287.73 125654 4840 6.09
AD 402 6467.12 3287.79 249350 7313 13.14

Table 3: Results for food-web problem. NP is the number of sensitivity parameters.

7.2.2 Index-1 example with state-dependent mass matrix

We also tested a simple index-1 example with non-constant matrix Fẋ. The equations are

(

y2 0
0 0

)(

ẏ1

ẏ2

)

=

(

−y2(y2 − 1)
y2 − y1 − 1

)

(32)

with initial values y1(0) = 1 and y2(0) = 2. We used the time interval [0,1] and the objective
function g(y) = y1 + y2. We cannot select both y1(0) and y2(0) as sensitivity parameters for
a well-posed problem. Thus we chose y1(0) as the sensitivity parameter. The DASPK3.0
error tolerances are ATOL = 10−9, RTOL = 10−7. The results are

ETH g w.r.t. y1(0)
FD 0.73575887
AD 0.73575898

true solution 0.73575882

7.3 Index-2 DAE case

We consider an index-2 DAE from mechanics. This problem is selected from the set of initial
value test problems [19]. It is of the form

dy

dt
= f(y), y(0) = y0, y′(0) = y′0,

with y, f ∈ R160, t ∈ [0, 1000]. M is a constant mass matrix given by

(

I120 0
0 0

)

,

where I120 is the identity matrix of dimension 120. For the definition of the function f , we
refer to [19]. The first 120 components are of index-0, the last 40 of index 2.

The components y0,i of the initial vector y0 are defined by







y0,3(j−1)+1

y0,3(j−1)+2

y0,3(j−1)+3





 =







cos(ωj) cos(βj)
sin(ωj) cos(βj)

sin(βj)





 , for j = 1, ..., 20,
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where
βj = α1π and ωj = 2j

3
π + α2π for j = 1, ..., 3,

βj = α3π and ωj = 2(j−3)
7

π + α4π for j = 4, ..., 10,

βj = α5π and ωj = 2(j−10)
6

π + α6π for j = 11, ..., 16,

βj = α7π and ωj = 2(j−17)
4

π + α8π for j = 11, ..., 16.

For the remainder of the initial conditions, the reader is referred to [19]. The vector αi

contains the sensitivity parameters, with nominal values

α1 = 3
8
, α2 = 1

13
, α3 = 1

8
, α4 = 1

29
,

α5 = − 2
15
, α6 = 1

7
, α7 = − 3

10
, α4 = 1

17
.

The origin of the problem is to compute the elliptic Fekete points. For any configuration
x := (x1, x2, ..., xN )

T in a unit sphere in <3, the points x̂1, x̂2, ..., x̂N are called the elliptic
Fekete points of order N if the function

V (x) :=
∏

i<j

||xi − xj||2

reaches its global maximum at x. This optimization problem can be formulated as an index-2
DAE [19]. Since it is a global optimization problem, the value of V (x) at the final time should
not depend on the initial conditions, i.e., the sensitivity of V (x) with respect to the sensitivity
parameters αi should be zero or close to zero. The buffer size for the adjoint method was
set to be large enough to hold the information for 30 time steps and 10 checkpoints. There
are a total of 8 checkpoints. Thus no temporary disk file was written.

We first computed the sensitivities by the forward sensitivity method (see Table 4). Then
the adjoint sensitivity method was used. The tolerances for both methods were RTOL =
ATOL = 10−4. Table 4 gives the results of the adjoint and forward methods. Note that the

Sensitivity FD AD
Vα1

-3.7873e-11 6.3065e-4
Vα2

0 4.8950e-5
Vα3

4.4342e-11 2.5240e-4
Vα4

0 2.4969e-5
Vα5

4.4272e-11 -9.3772e-4
Vα6

-3.7543e-11 -1.4526e-4
Vα7

-3.8355e-11 5.4515e-4
Vα8

-3.7363e-11 1.0331e-4

Table 4: Results for Fekete problem.

results for the adjoint method are not as good as that of the forward sensitivity method.
However, they are within the error tolerances. The CPU time used for the forward method
was 11.49, and for the adjoint method 6.78. The CPU time will be almost the same for the
adjoint method if more sensitivity parameters are considered, whereas it will increase for the
forward method.
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